
Parallel DBSCAN Clustering Algorithm using Apache Spark
Anousheh Shahmirza

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
Anoushehshahmirza@cmail.carleton.ca

December 9, 2019

Abstract

Executing DBSCAN using frameworks such as Apache Spark is a solution to over-
come the problems caused by the high time complexity of DBSCAN. Obviously, per-
forming DBSCAN on each executer and gathering the partial clusters would not produce
the same result as the serial algorithm. This study proposed a method to merge the
partial clusters created by each executor and have the same clusters as the sequential
DBSCAN.

1 Introduction
Analyzing big data is a very challenging problem today. Parallel computing is a type of
computing architecture in which several processors execute or process an application or
computation simultaneously. Parallel computing helps in performing large computations
by dividing the workload between more than one processor, all of which work through
the computation at the same time. By distributing the computations across hundreds or
thousands of machines, the execution time reduces to a reasonable amount of time.

MapReduce framework has been devised to deal with big data in parallel. Google’s
MapReduce or its open-source equivalent Hadoop is a powerful tool for building such ap-
plications. With MapReduce, rather than sending data to where the application or logic
resides, the logic is executed on the server where the data already resides, to expedite pro-
cessing. This algorithm uses two user-defined functions which are called map and reduce
functions [10]. Both map and reduce functions take a key-value pair as input and may
output key-value pairs. This algorithm starts with applying a map operation to each logical
record in the input to compute a set of intermediate <key, value> pairs, and then applying
a reduce operation to all the values that shared the same key, to combine the derived data
appropriately [2].

Apache Spark is an open-sourced programming model that supports a much wider class
of applications than MapReduce. Apache Spark has a great performance for multi-pass
applications that require low-latency data sharing across multiple parallel operations.

This study is about applying the DBSCAN algorithm using the framework Spark. DB-
SCAN (Density-based spatial clustering of applications with noise) is an unsupervised learn-
ing data clustering approach that is commonly used in data mining and machine learning.
Based on a set of points, DBSCAN groups together points that are close to each other based

1



on a distance measurement and a minimum number of points. Also, this algorithm simply
finds outliers point which are in low-density regions. This algorithm is popular since it can
divide data into clusters with arbitrary shapes. Moreover, DBSCAN does not require the
number of the clusters a priori as well as it is insensitive to the order of the points in the
dataset [3]. However, applying DBSCAN with real-world data is challenging due to the size
of datasets has been growing exponentially.

2 Literature Review
Presenting a parallel DBSCAN algorithm using the new big data framework Spark is receiv-
ing attention in recent years. As opposed to MapReduce based approaches for DBSCAN
parallelization [7], [10], [4], [9], [1], there are few studies on DBSCAN clustering using Spark
[5], [8], [6].

2.1 A Parallel DBSCAN Algorithm Based On Spark
S_DBSCAN algorithm is divided into the following steps:

1) partitioning the raw data based on a random sample
2) computing local DBSCAN algorithms in parallel
3) merging the data partitions based on the centroid
As a result of the map task, partial clusters are generated. Merging stage follows four

steps:
1) calculating the distance between every two partial clusters in the same partition; then

use quicksort or heap-sort to find the minimum distance dmin

2) sort every min dmin to find the minimum value Dmin

3) setting the threshold σ to merge partial clusters, and σ << Dmin

4) creating a centroid_distance matrix and traversing every element in the matrix. If
the distance is less than σ, then add them to the merge queue until every element is visited

S_DBSCAN Algorithm generates almost but exactly the same result as sequential DB-
SCAN [8].

2.2 Parallel DBSCAN Algorithm Using a Data Partitioning Strategy with
Spark Implementation

This algorithm proposed a merging technique that maps the relationship between the local
points and their bordering neighbours. The merging approach used in this study is very
effective in reducing the time taken for the merge phase and very scalable with increasing
the number of processing cores and the generated partial clusters [6].

The process starts with reading the original input data and partition data into multiple
smaller and balanced sub-domains. The number of sub-domains is equal to the number
of cores. The Spark driver creates a task-set request and the Task-Scheduler launches the
tasks to executors. The Spark executors read data accordingly from disk and create partial
clusters using kd-tree. The partial clusters are sent back to the driver at the end of the
closure. Reading data from disk in executors instead of in the driver can break scalability
barriers and achieve better performance. Each executor just performs its computation with-
out communicating with other executors. While a partial cluster is created, the mapping
relationship between a data point that is added in this partial cluster and the bordering
neighbour is recorded by a Hashmap. The mapping relationship between points and their

2



bordering neighbours is applied to merge partial clusters without communicating with other
executors, which is very desirable in a parallelism environment. Moreover, search operation
in the Hashmap data structure takes O(1) time if there is no collision. the data structure
that holds this relationship is also effective in terms of storage space and this structure is
designed as one part of the cluster structure itself.

After all the partial clusters are collected through a shared variable accumulator. The
algorithm identifies the clusters that are supposed to be merged by the Hashmap. When
one partial cluster Cn is generated by the help of some bordering points and the bordering
points themselves are in another partial cluster Cm, these two clusters are going to be
merged. The second case where we need to merge two partial clusters happens when two
partial clusters share bordering points. We should merge them because they are supposed
to be in one cluster if one sequential DBSCAN algorithm is run [6].

3 Problem Statement
DBSCAN algorithm goes through each point of the database multiple times. The time
complexity of the DBSCAN is O(n) which can be reduced to O(n log n) in some cases
using kd-tree (n is the number of objects to be clustered). So the execution time for this
algorithm highly increases when it comes to the massive dataset [5].

4 Solution: A novel scalable DBSCAN algorithm with Spark
A pioneer algorithm for presenting a scalable DBSCAN algorithm with Spark, first reads
data from the Hadoop Distributed File System (HDFS) and forms Resilient Distributed
Datasets (RDDs), transforming them into data points [5]. Certainly, this process is done in
the Spark driver. It then pushes all the data into multiple executors. Within each executor,
partial clusters are built and sent to the driver. There are no points that are shared between
different partial clusters. The algorithm applies kd-tree to find the neighbours of a node.
This is resulted to avoid communication between executors to reduce complexity from O(n2)
to O(nlogn). Each executor only computes the points that belong to it. Otherwise, there
would be a lot of overlap of computation between different executors. Consequently, shuffle
operations are prevented which costs a lot.

This algorithm introduces the term: SEEDs, which are points that do not belong to the
current partition. These are additional points that are placed in each partial cluster. After
all the partial clusters are collected through the shared variable accumulator, the algorithm
identifies the clusters that are supposed to be merged by SEEDs. Merging is done in driver
code too. These SEEDs serve as something like markers so that we can easily identify outer
master partial clusters by using them and merge them into a bigger cluster. The SEEDs
are not related to the locations. If the current point’s index is beyond the range of current
partition it is taken as a SEED. So the main goal on the executor side is to place SEEDs,
and on the driver side, we dig out SEEDs and identify master partial clusters and merge
them.

3



Figure 1: An overview of DBSCAN algorithm with Spark

Taking advantage of Java Programming language, two data structures Hashtable and
Queue are used in this algorithm. The complexity order of Put function in Hashtable is
O(1 + n/K) where K is the hash table size. If K is large enough, the result is effectively
O(1). Moreover, Method containsKey(key) is O(1). The algorithm executions generate the
same result as the serial execuation [5].

5 Experimental Evaluation
5.1 Dataset
The dataset used to evaluation is a GPS trajectory dataset collected in (Microsoft Research
Asia) GeoLife project by 182 users in a period of over two years (from April 2007 to August
2012). This dataset recoded a broad range of users’ outdoor movements, including not only
life routines like go home and go to work but also some entertainments and sports activities,
such as shopping, sightseeing, dining, hiking, and cycling.

4



Figure 2: GPS dataset

5.2 Experimental setup
Different setup and a series of experimental tests to verify the effectiveness and efficiency
of the DBSCAN algorithm with Spark have be done. The reported results are based on
the given radius (eps) equal to 30. Moreover, the minimum number of neighbors within the
given radius has set to 5.

Figure 3: GPS dataset after clustering with eps =3000,minPts = 5

5.3 Experimental results
The parallel execution generates the same result as sequential execution. with esp=30 and
MinPts=5, both the algorithms create 114 clusters. To implement the algorithm, after
creating RDDs with Point type, a random sample of points with the probability of 0.1
percent has been chosen. Then, this copy of points is repartitioned and added to the
partitions to generate the points which do not belong to the current cluster.

5



The experimental results have been reported in terms of the CPU times. As is shown
in figure 5, when using more cores, more partial clusters are produced. Figure 4, clearly
illustrates that more time is spent in the driver when there are more partial clusters. As
expected, the speedup occurs in the executers by using more executors.

Figure 4: The time distribution between driver and executors

Figure 5: Number of partial clusters

6 Conclusions
An effective method in terms of accuracy for merging the partial clusters has been devised
in this study.

6



This new parallel DBSCAN algorithm with Spark has advantages to many other similar
methods since there is no communication between executers in this algorithm. Moreover,
the result of this algorithm is relatively the same as the sequential one.

A future study could be working on spending less time in the driver since parallel
algorithms are useful when the number of cores as much as possible. This, in turn, would
result in low performance in spark driver.

References
[1] Bi-Ru Dai and I-Chang Lin. Efficient map/reduce-based dbscan algorithm with opti-

mized data partition. In 2012 IEEE Fifth International Conference on Cloud Comput-
ing, pages 59–66. IEEE, 2012.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd, vol-
ume 96, pages 226–231, 1996.

[4] Yan Xiang Fu, Wei Zhong Zhao, and Hui Fang Ma. Research on parallel dbscan
algorithm design based on mapreduce. In Advanced Materials Research, volume 301,
pages 1133–1138. Trans Tech Publ, 2011.

[5] Dianwei Han, Ankit Agrawal, Wei-Keng Liao, and Alok Choudhary. A novel scalable
dbscan algorithm with spark. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1393–1402. IEEE, 2016.

[6] Dianwei Han, Ankit Agrawal, Wei-keng Liao, and Alok Choudhary. Parallel dbscan
algorithm using a data partitioning strategy with spark implementation. In 2018 IEEE
International Conference on Big Data (Big Data), pages 305–312. IEEE, 2018.

[7] Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and
Jianping Fan. Mr-dbscan: an efficient parallel density-based clustering algorithm using
mapreduce. In 2011 IEEE 17th International Conference on Parallel and Distributed
Systems, pages 473–480. IEEE, 2011.

[8] Guangchun Luo, Xiaoyu Luo, Thomas Fairley Gooch, Ling Tian, and Ke Qin. A
parallel dbscan algorithm based on spark. In 2016 IEEE International Conferences
on Big Data and Cloud Computing (BDCloud), Social Computing and Networking
(SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-
SocialCom-SustainCom), pages 548–553. IEEE, 2016.

[9] Maitry Noticewala and Dinesh Vaghela. Mr-idbscan: Efficient parallel incremental
dbscan algorithm using mapreduce. International Journal of Computer Applications,
93(4), 2014.

[10] Kyuseok Shim. Mapreduce algorithms for big data analysis. Proceedings of the VLDB
Endowment, 5(12):2016–2017, 2012.

7


